Quantile-based fuzzy C-means clustering of multivariate time series: Robust techniques

نویسندگان

چکیده

Robust fuzzy clustering of multivariate time series is addressed when the purpose grouping together generated from similar stochastic processes. Robustness to presence anomalous attained by considering three well-known robust versions a C -means model based on spectral dissimilarity measure with high discriminatory power. The compares principal component scores obtained estimates quantile cross-spectral densities, and techniques follow so-called metric, noise trimmed approaches. metric approach incorporates in objective function distance aimed at neutralizing effect outliers, builds an artificial cluster expected contain outlying series, removes most atypical dataset. As result, proposed methods take advantage both nature these capability density identify complex dependence structures. An extensive simulation study including linear, nonlinear GARCH processes shows that algorithms are substantially effective coping clearly outperforming other alternative procedures. Two specific applications regarding financial environmental illustrate usefulness presented methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

Fuzzy Time Series Forecasting Based On K-Means Clustering

Many forecasting models based on the concepts of Fuzzy time series have been proposed in the past decades. These models have been widely applied to various problem domains, especially in dealing with forecasting problems in which historical data are linguistic values. In this paper, we present a new fuzzy time series forecasting model, which uses the historical data as the universe of discourse...

متن کامل

Bilateral Weighted Fuzzy C-Means Clustering

Nowadays, the Fuzzy C-Means method has become one of the most popular clustering methods based on minimization of a criterion function. However, the performance of this clustering algorithm may be significantly degraded in the presence of noise. This paper presents a robust clustering algorithm called Bilateral Weighted Fuzzy CMeans (BWFCM). We used a new objective function that uses some k...

متن کامل

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

متن کامل

Fuzzy Clustering of Series Using Quantile Autocovariances

Unlike conventional clustering, fuzzy cluster analysis allows data elements to belong to more than one cluster by assigning membership degrees of each data to clusters. This work proposes a fuzzy C– medoids algorithm to cluster time series based on comparing their estimated quantile autocovariance functions. The behaviour of the proposed algorithm is studied on different simulated scenarios and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Approximate Reasoning

سال: 2022

ISSN: ['1873-4731', '0888-613X']

DOI: https://doi.org/10.1016/j.ijar.2022.07.010